Reactive oxygen species and Ca2+ are involved in cadmium-induced cell killing in yeast cells.

نویسندگان

  • Xinghua Wang
  • Min Yi
  • Hui Liu
  • Yansha Han
  • Huilan Yi
چکیده

Cadmium (Cd) is one of the most toxic heavy metals. It is of great environmental concern and its toxicity has been investigated in a variety of cells. In this study, we elucidated the toxic effects of Cd in cells of yeast (Saccharomyces cerevisiae). Our results showed that Cd2+ (0.05-5.0 mmol·L-1) significantly inhibited yeast cell growth, and the inhibitory effect was positively correlated with Cd2+ concentrations. Cd2+ caused loss of yeast cell viability in a concentration- and duration-dependent manner. Intracellular reactive oxygen species (ROS) and Ca2+ levels increased in yeast cells after exposure to 5.0 mmol·L-1 Cd for 6 h. Cd2+-caused cell viability loss was blocked by antioxidants (0.5 mmol·L-1 ascorbic acid or 500 U·mL-1 catalase) or Ca2+ antagonists (0.5 mmol·L-1 ethylene glycol tetraacetic acid or 0.5 mmol·L-1 LaCl3). Moreover, a collapse of mitochondrial membrane potential (ΔΨm) was observed in Cd2+-treated yeast cells. These results indicate that Cd-induced yeast cell killing was associated with the elevation of intracellular ROS and Ca2+ levels and also the loss of ΔΨm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells

Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...

متن کامل

The role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species production in PC12 cells

Objective(s): Hyperglycemia, oxidative stress and apoptosis have key roles in pathogenesis of diabetic neuropathy. There are local renin-angiotensin systems (RASs) in different tissues such as neural tissue. Local RASs are involved in physiological and pathophysiological processes such as inflammation, proliferation and apoptosis. This study aimed to investigate the role of local renin-angioten...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Canadian journal of microbiology

دوره 63 2  شماره 

صفحات  -

تاریخ انتشار 2017